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Complete FDTD Analysis of Microwave
Heating Processes in Frequency-Dependent

and Temperature-Dependent Media
François Torres and Bernard Jecko

Abstract—It is well known that the temperature rise in a
material modifies its physical properties and, particularly, its
dielectric permittivity. The dissipated electromagnetic power in-
volved in microwave heating processes depending on"(!), the
electrical characteristics of the heated media must vary with
the temperature to achieve realistic simulations. In this paper,
we present a fast and accurate algorithm allowing, through
a combined electromagnetic and thermal procedure, to take
into account the influence of the temperature on the electrical
properties of materials. First, the temperature dependence of the
complex permittivity ruled by a Debye relaxation equation is in-
vestigated, and a realistic model is proposed and validated. Then,
a frequency-dependent finite-differences time-domain ((FD)2TD)
method is used to assess the instantaneous electromagnetic power
lost by dielectric hysteresis. Within the same iteration, a time-
scaled form of the heat transfer equation allows one to calculate
the temperature distribution in the heated medium and then to
correct the dielectric properties of the material using the proposed
model. These new characteristics will be taken into account by the
EM solver at the next iteration. This combined algorithm allows
a significant reduction of computation time. An application to a
microwave oven is proposed.

I. INTRODUCTION

H EATING applications of microwaves have been widely
investigated in recent years [1], and a lot of experimental

and theoretical work has been carried out, both in medical
[2]–[5] and industrial [6]–[10] domains. From the theoretical
point of view, realistic models have been developed through
computer simulations to determine the temperature distribution
induced by microwave radiation in complicated structures of
arbitrary shapes. The thermal problem is treated by solving the
heat transport equation (HTE) [3], [7], [8], [11]–[14] to obtain
the heating patterns. This heat transport equation involves a
term related to the dissipated electromagnetic power, which
can be assessed by many numerical methods. A review of
numerical models used for medical purposes has been given
by Spiegel [15], who stated that the finite-difference time-
domain (FDTD) method is finding an increased usage for the
electromagnetic and thermal resolution of such problems.

The electromagnetic power dissipation leading to heat
generation is due to dielectric and conduction losses in the
heated media, and consequently a knowledge of the dielectric
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and conduction properties of materials is imperative to achieve
realistic simulations. In early work using FDTD method [3],
[16]–[18], computations were performed assuming monochro-
matic or narrow frequency bandwidth waves, and, therefore,
supposed constant real permittivities and constant equivalent
conductivities including both dielectric and conduction losses
at the frequency of interest. These assumptions were due
to the inability of the FDTD method to take the frequency
dependence of dielectric properties into account. This weak
point of the FDTD algorithm has been overcome in recent
works [19]–[22], which present time-domain formulations
allowing for the FDTD resolution of problems for media for
which the complex permittivity may be described by
a Debye or Lorentz equation. Generally, the media complex
permittivities at microwave frequencies can be fitted by the
Debye relaxation equation, and this formulation has been used
in recent applications [5], [21], [22] with a good agreement
between theory and experimentation.

In most cases [3], [5], where constant or frequency-
dependent permittivities are used, the heating patterns are
computed once the electromagnetic problem is solved and
the electromagnetic power density in the media is known.
However, it is well known that the temperature elevation
inside a medium leads to changes in its physical properties,
and especially modifies the complex permittivity of the
medium. As a result, the dissipated power, which depends
on this quantity, becomes temperature-dependent. If this fact
is not taken into account, the computed electromagnetic fields
distribution in the medium can be erroneous, with a resulting
overestimation of the temperature.

In a recent work [8], Maet al. have proposed a combined
electromagnetic and thermal FDTD model, allowing to take
the temperature dependence of the electrical properties of
the heated media into account during the electromagnetic
resolution, but the time steps used in the two algorithms
remained very different: close to 1 ps for the electromagnetics
and close to 1 s for the thermal. Thus, the authors have
adopted the following approach: the electromagnetic solver
is run until the steady state is reached, and then the power
dissipation distribution is computed from the root mean square
(rms) value of the electric field monitored over a period of
the incident frequency. The temperature distribution is then
computed during a few time steps of the thermal algorithm
and used to update the electrical properties of the medium.
The electromagnetic resolution is then resumed, taking into
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account these new characteristics. Once the steady state is
reached again, the above procedure is repeated until the actual
heating time is reached. The drawback of such a method is to
require large computation times (the authors mention 12 h on
an HP730 workstation for the case of a microwave oven).

This paper presents a way to speed up such a procedure
within the same FDTD algorithm, through the direct determi-
nation of the temperature distribution in frequency-dependent
materials, for which a temperature-dependent Debye relaxation
equation is assumed for the description of the permittivity.
In Section II, the temperature dependence of the parameters
involved in the permittivity of a Debye medium is investigated
and a realistic model is proposed and validated by a compar-
ison with measurement results. As the dielectric properties
of the media have to be modified by the heating effects
of electromagnetic waves, a time-domain formulation of the
electromagnetic power dissipated by dielectric hysteresis is
presented in Section III and is used as a source term in the heat
transport equation developed in Section IV. At this point, time
scaling problems between Fourier’s and Maxwell’s equations
are pointed out, and a way to overcome such problems is
presented and validated. Finally, some applications are studied
in Section V and, in particular, the heating phenomena inside
a microwave oven are presented.

II. TEMPERATURE DEPENDENCE OF THE

COMPLEX DEBYE PERMITTIVITY

The classical theory for polar liquids is due to Debye [23],
but it can be more generally used to characterize a medium
containing microscopic permanent or induced dipoles, whose
macroscopic resultant is known as the polarization of the
medium. This polarization is linked to the macroscopic
electric field through the medium’s relative susceptibility

or the relative permittivity by the relation:

(1)

or

(2)

where the complex relative permittivity can be described
by the first-order equation:

(3)

Here is the infinite frequency relative permittivity,
the static relative permittivity, and the relaxation time. We
shall here limit the developments to a single relaxation time
medium, but the generalization to media characterized by
several relaxation times and static permittivities, as now used
in [5], [22], can be easily made.

A lot of work has been done [23]–[28] to precisely define
the different quantities of (3), and it has been shown [24]–[28]
that only the temperature dependence of the static permittivity

and the relaxation time have to be considered to achieve a good
agreement between theoretical models and measured data. The
variations of the infinite permittivity with the temperature are
quite negligible compared to the other variations.

A. Static Permittivity

Several models have been developed to analytically de-
termine the static permittivity [24], [25], and they basically
differ in the assumptions used to evaluate the local electric
field, which is the microscopic field acting on one dipole.
The Clausius–Mosotti formula [24], based on the original
treatment of the local field established by Lorentz [29], leads to
erroneous values for the static permittivity in some cases [28].
This model has been improved by Onsager [30], and it gives
quite a good approximation of . Further refinements of the
Onsager theory have been established by Kirkwood [28], but
they require additional parameters that are not easily available
for all dielectrics.

Therefore, we decided to use the Onsager model for the
determination of the temperature dependence of. This model
leads to the following static formula [26]:

(4)

where is the moment of a single dipole, the number of
dipoles per unit volume, the Boltzmann’s constant, and
the temperature. The right-hand term of (4) has to be estimated
from measured data for the considered dielectric, and in order
to achieve the best agreement with experimental data, the
dipole density is taken to be temperature-dependent and we
use the Boltzmann’s statistics [32] to represent this behavior:

(5)

where is the potential energy of a dipole and is a constant
of the medium. Since the other quantities of the right-hand
term of (4) are independent of the temperature, (4) can be
written as

with (6)

However, the values of and are generally unavailable
for all media, but they can be easily deduced from a couple
of experimental data.

A knowledge of these values allows one to develop (6) as a
classical second-order equation, whose positive root gives the
analytical temperature dependence of, shown in (7) at the
bottom of this page.

with (7)
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Fig. 1. Computed and measured temperature dependence of the imaginary part of the water permittivity.

B. Relaxation Time

The macroscopic relaxation time used in (3) is not the same
as the molecular relaxation time defined by Debye, differing
from it by a constant factor that depends on the theory assumed
for the static permittivity. Moreover, the basic physical pro-
cesses involved in the relaxation phenomena are not the same
for liquids and solids [24]. However, the analytical law ruling
the temperature dependence of the macroscopic relaxation time
happens to have the same form for liquids and solids [25], [31]:

(8)

where is Boltzmann’s constant, the temperature, a
constant of the medium, and is generally known as
the activation energy, which refers in liquids to an energy
connected to the viscosity and in solids to the height of the
energy barrier between equilibrium positions of the dipoles.
The values of and are not available for all media, but,
as for the static permittivity, can be deduced from a couple of
experimental data giving the temperature dependence of the
complex permittivity.

To validate this model, water has been taken as an example.
This polar dielectric has been extensively investigated, and
data on its complex permittivity are easily available [26].
Assuming , the following values have been found
from experimental data:

J

s

J

and

Using these values, the temperature dependence of the
static permittivity and relaxation time have been computed

and the imaginary part of the complex permittivity has been
determined for three microwave frequencies for which mea-
surements are available [26] (3, 9.35, and 23.6 GHz). Results
are plotted on Fig. 1, which shows a good agreement between
the experimental points and the simple model we used.

III. D ISSIPATED POWER

In order to assess the temperature evolution inside a dis-
persive dielectric medium, it is necessary to evaluate the
dissipated power in the material. In most applications, the
FDTD electromagnetic solver is run to compute the sinusoidal
steady-state fields, then the dissipated power deposition and
the heating patterns are determined in the medium. As the
temperature dependence of the complex permittivity has to be
taken into account, the dissipated power and the temperature
distribution must be computed during the electromagnetic
resolution whatever the time-domain evolution of the incident
wave is. Therefore, the classical expression for the mean power
lost by dielectric hysteresis, i.e.,

(9)

is no longer valid since it is restricted to steady-state time-
harmonic electromagnetic fields, and consequently the dissi-
pated power has to be expressed in the time domain.

In its local form, the energy conservation equation is

(10)

where

Poynting’s vector ;
power dissipated per unit volume;
volumic energy density, which can be written as

(11)
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Fig. 2. Comparison between the FDTD expression for the power lost by dielectric hysteresis (16), and the analytical value (9).

The classical expression of the divergence of a cross product
leads to

(12)

Using Maxwell’s curl equations

(13)

and

(14)

and identifying the terms involved in the time derivative of
, (12) can be written as

(15)

As in (10), the second term of (15) is the total power dissipated
per unit volume and can be more distinctly identified as

(16)

which is the instantaneous power dissipated by dielectric
hysteresis per unit volume:

(17)

which is the instantaneous power dissipated by magnetic losses
per unit volume, and

(18)

which is the instantaneous power dissipated by conduction
losses per unit volume.

Assuming a nonmagnetic and nonconductive medium, the
power dissipated per unit volume reduces to the dielectric
hysteresis losses:

(19)

To be used as a source term for the thermal algorithm, the
power dissipated per unit volume is evaluated at the center of
every FDTD cell containing a dissipative medium, using the
spatial average value of each and field component.

In order to demonstrate the validity of the dissipated
power expression (16), a one-dimensional finite-difference
computation has been performed considering a plane wave
normally incident at a planar interface between air and a
temperature-independent dispersive Debye medium character-
ized by and ps and modeled
using the frequency-dependent finite-differences time-domain
((FD)2TD) formalism of [22]. The incident field is a sinusoidal
wave at the frequency of 10 GHz with an electric field
amplitude of 1 V/m. The cell size is 0.1 mm and the time step
is 0.16 ps. The dissipated power is computed in the medium
at 3 mm beneath the interface using (16). Shown in Fig. 2 is
a comparison of the time-domain computation and the exact
value obtained with the analytical expression (9). An excellent
agreement is found once the electromagnetic fields in the
medium have reached the sinusoidal steady state. Moreover,
an analytical confirmation of this result can be obtained. By
assuming in expression (16) a time-harmonic dependence of
the electromagnetic field, and using the frequency-domain
relation , the classical expression (9) of
the mean dissipated power can be established.
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IV. HEATING PATTERNS DETERMINATION

The electromagnetic-induced heating pattern in a medium
exposed to an electromagnetic field may be obtained from the
heat transport equation (HTE), also known as the Fourier’s
equation. In the presence of a cooling fluid circulating inside
the medium, this equation is

(20)

where

medium density (kgm );
specific heat of the medium (JK
kg );

thermal conductivity of the medium
(W m K );
medium temperature (K);
product of flow and heat capacity of the
cooling fluid (W m K );
temperature of the cooling fluid (K);
electromagnetic power dissipated per unit
volume (W m ).

For simplicity in solving this equation, the parameters
and are taken to be independent of position,

temperature, and time.
At this point, attention must be paid to the time scales: in

realistic cases, the heating process extends over seconds or
minutes, strongly depending on the incident power, while the
electromagnetic steady-state is reached in a few nanoseconds
at microwave frequencies. This time scaling problem can be
overcome in a simple way: Rewriting (20) as

(21)

and multiplying it by a constant factor leads to

(22)

From this equation, it can be seen that if the dissipated
power , the thermal conductivity , and the cooling factor

are multiplied by , the temperature evolution is
times quicker, while its spatial evolution remains the same.

Introducing the thermal diffusivity as

(23)

(22) can be written as

(24)

In other words, when the thermal diffusivity is multiplied
by , the temperature evolution, given by (24), istimes
quicker. The scaling effects on the dissipated power, on
the thermal conductivity , and on the cooling factor
are implicitly expressed in (24). Therefore, it is possible to
scale the heating time down to the duration of the FDTD EM
computation, but obviously, the FDTD time window must be
large enough to reach the steady state in the studied medium,
including the possible resonances of the limited structures,
and the heating process must be started only once this steady
state is established. The way to set the parameters to fit the
computation time window is quite simple and is summarized
below.

Suppose we want to scale an actual heating duration to
the EM computation time window , the scaling factor

is

(25)

and the thermal diffusivity is to be simply multiplied by to
achieve this time scaling. Once the computation is over, the
temperature evolution over the actual heating duration can be
simply obtained by multiplying the FDTD time by the scaling
factor .

Considering this fact, Fourier’s equation can be easily
solved, and several implicit finite-difference schemes have
been proposed [3], [5], [7], but, as in [8], we used the classical
explicit algorithm for simplicity, and, if no cooling effects
are assumed, it leads to the following equation in a three-
dimensional case:

(26)

and the FDTD grid used to solve Maxwell’s equations can
be used for the resolution of (26). Thus, the time and space
increments ( and ) are the same as those used
by the FDTD EM solver. As for the dissipated power, the
temperature nodes are located at the center of every FDTD
cell.

The stability criterion of (26), i.e.,

(27)

is generally less restricting than the classical stability condition
used for the electromagnetic fields FDTD resolution [33]. But,
due to the large values the scaling factorcan reach, the
time increment needed to ensure the stability of (26) must
be compared to the classical FDTD time step [33], and the
smallest value must be chosen for both Maxwell’s and heat
transport equations resolution.
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Fig. 3. Validation of the time-scaling procedure.

In addition to (20), convective boundary conditions can be
used at the surfaces of the heated materials. Such conditions
can be written as

(28)

where

thermal conductivity of the material (Wm
K );

convection heat transfer parameter (Wm K );
unit vector normal to the surface at the considered
point;
surface temperature of the material (K);
temperature of the surrounding external medium
(K).

This differential equation can be easily solved using the
explicit FDTD scheme.

Rigorously, when (28) is used within a time-scaled proce-
dure, it is necessary to multiply both the thermal conductivity

and the convection heat transfer parameterby the scaling
factor . As only a ratio of these quantities appears in (28),
can be removed and the equation to solve remains unchanged.

Fig. 3 shows a three-dimensional (3-D) validation of this
time scaling. The studied structure is a 2020 20 mm
water cube, illuminated by a plane wave at the microwave
frequency of 2.45 GHz, and an incident power density of 1
W/cm . The cell size is 1 mm and the time step is 1.5 ps, and
the medium is supposed to be temperature-dependent. Two
FDTD computations were performed for two time windows
of 4.5 and 6.1 ns, i.e., about 11 and 15 periods of the incident
wave, but the heating processes were started only once the
steady state is reached in the structure. Thus the FDTD heating
durations are respectively reduced to 3.6 and 5.3 ns, while
the actual heating duration is 300 s in all cases, with
an initial temperature of 27C. The thermal properties of

Fig. 4. Combined electromagnetic and thermal FDTD algorithm.

the medium are J kg K ,
kg m and W m K , leading to the thermal
diffusivity m s . This value was scaled
to fit the computation windows according to (25), and results
were scaled back to show the temperature evolution during the
actual heating duration. The agreement between the curves is
excellent, showing the validity of such a time scaling.

Moreover, several computations have been performed with
this structure to see the influence of the scaling factoron
the results accuracy. It has been found that, even when the
heating process is reduced to only 0.75 ns, leading to a large
value of , the relative error on the final temperature
remains under 1%.
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Fig. 5. Validation of the FDTD electromagnetic and thermal algorithm.

V. APPLICATIONS

All quantities are now available to allow the three-
dimensional determination of the electromagnetic fields,
temperature distribution, and associated dielectric properties
modifications within the same computation: as presented
on Fig. 4, the electromagnetic fields are computed using
the classical (FD)TD scheme [22] for frequency-dependent
materials. A knowledge of and allows us to calculate
the instantaneous power dissipated per unit volume using
the FDTD development of (16). Then the temperature is
determined at the center of every FDTD cell containing the
dissipative media at every time step, using the finite-difference
expression of the heat transport equation (26). The temperature
distribution is then used to update the static permittivity and
relaxation time in each cell. It must be pointed out that since
the temperature difference between two adjacent cells leads to
different dielectric properties between neighboring cells, the
heated materials become inhomogeneous, and this fact has to
be considered for the computation of electric fields in every
cell containing a dispersive medium.

In order to validate results obtained with the FDTD method,
we have first studied the temperature evolution in water for
the one-dimensional (1-D) configuration previously defined in
Section III. The heating time of 350 s was scaled to the FDTD
EM computation time, and the microwave frequency is 2 GHz.
The results are compared with the solution obtained with a
frequency-domain numerical method developed in [7], which
uses the steady-state propagation equations to evaluate the
power dissipated in the medium, assumed to be temperature-
independent, and solves the heat transport equation (without
time scaling) with an implicit finite-difference scheme. Thus,
in our computations, the temperature variations did not affect
the dielectric properties of the material. Shown in Fig. 5 is the
comparison of the temperature evolution obtained at a point
located 3 cm beneath the interface with our FDTD model and

Fig. 6. Geometry of the studied microwave oven.

the frequential solution given by [7]. An excellent agreement
is found between the two methods.

A more practical application is the heating process in a
microwave oven. This three-dimensional problem has been
extensively treated in [8], where the authors have successfully
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Fig. 7. Calculated temperature distribution in the workload at 180 s.

compared their numerical results with experimental measure-
ments. In order to validate our method, we have performed
3-D FDTD computations considering the same geometry.
The studied structure is presented on Fig. 6, and the FDTD
mesh is the same as detailed in [8]. Energy at the working
frequency of 2.45 GHz is supplied to the oven cavity through
the waveguide, which is excited by a plane of equivalent
electric and magnetic currents. The workload in the oven is a
phantom food gel placed in a PTFE container. As far as we
know, the dielectric properties of the gel were assumed to be
frequency-independent in the FDTD computations presented in
[8]. However, as the gel is mainly composed of water (66%),
we assumed a Debye relaxation equation for the description of
the dielectric properties of the gel. Concerning its temperature
dependence, Maet al. [8] used experimental data for the
dielectric properties of the gel, and they interpolated the value
of the complex permittivity for temperatures for which data
were unavailable. From the experimental data given in [8], and
assuming the same infinite permittivity as water ,
the values required by (7) and (8) have been computed to fit
the measured data at best. Thus, the following values have
been found:

J

s

J

The dielectric characteristics of the PTFE container are as-
sumed to be independent of temperature and frequency, and
the thermal properties of both gel and PTFE that we used are
the same as in [8], i.e.,

m s

W m K

m s

W m K

Moreover, a convective heat transfer coefficient of 10
W m K was assumed to model a flow of air on the
surface of the workload, due to the action of the oven fan.
The air temperature in the oven cavity is 30C, while the
initial temperature of the workload is 5C. The actual heating
time is 180 s and has been scaled down to 12 ns (about 29
periods of the incident wave) for a total FDTD computation
window of 15 ns ( 37 periods). The time required for this
computation is quite reasonable, since only 70 min on a
DEC Alpha/2100 Server (equivalent to 2 h and 40 min on an
HP730 workstation) were necessary.

Fig. 7 presents the calculated temperature distribution in
the workload at the end of the simulated heating time in the
horizontal plane (XoZ). Taken from [8], Fig. 8 shows the ex-
perimental temperature distribution, obtained using a thermal
imaging technique, for the same configuration (courtesy of
Dr. C. Railton). It can be seen that the agreement between
the two heating patterns is good, particularly concerning the
location of the hot spots. Most of the heating takes place on
the right face of the workload, the energy being supplied to the
system at this point. It can also be noticed that the temperature
has not been overestimated at the corners of the workload,
showing the capability of the model to correctly handle the
field variations at the interfaces between materials of different
electrical properties.

VI. CONCLUSION

We have presented a complete 3-D (FDTD)2 model al-
lowing, within the same algorithm, to assess the temperature
rise due to temperature-dependent dielectric losses. A realistic
model of the temperature dependence of the Debye complex
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Fig. 8. Measured temperature distribution in the workload at 180 s (Courtesy
of Dr. C. Railton [8]).

permittivity, used together with a time-domain expression of
the dissipated power and a time-scaled formulation of the
heat transfer equation, allows us to drastically reduce the
computation times. The application to the heating phenomena
in a microwave oven has shown, through good agreement
between theory and experiment, the power of the method and
its capability to model complex structures. The limitations
of the model mainly lie in the fact that experimental data
on the temperature dependence of the dielectric properties of
materials are lacking. Another point to mention is that the
conductivities of media and their related dissipated powers
have not been taken into account, but work is currently in
progress to develop analytical and numerical models of the
temperature dependence of the materials conductivity.
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